文獻(xiàn)名: Transport of manure-borne testosterone in soils affected by artificial rainfall events
作者: Yong Qia , Tian C. Zhangb
a 136 PKI, Civil Engineering Dept., University of Nebraska-Lincoln, Omaha, NE, 68182, USA
b 205D PKI, Civil Engineering Dept., University of Nebraska-Lincoln, Omaha, NE, 68182, USA
摘要:Information is very limited on fate and transport of steroidal hormones in soils. In this study, the rainfall simulation tests were conducted with a soil slab reactor to investigate the transport of manure-borne testosterone in a silty-clay loam soil under six controllable operation conditions (i.e., three rainfall intensities and two tillage practices). The properties [e.g., rainwater volume, particle size distribution (PSD)] of the slurry samples collected in runoff and leachate at different time intervals were measured; their correlation with the distribution of testosterone among runoff, leachate and soil matrix was analyzed. The results indicated that more than 88% of the testosterone was held by the applied manure and/or soil matrix even under the rainfall intensity of 100-year return frequency. The runoff facilitated testosterone transport through both dissolved and particle-associated phases, with the corresponding mass ratio being ∼7 to 3. Soil particles collected through runoff were mainly silt-sized aggregates (STA) and clays, indicating the necessity of using partially-dispersed soil particles as testing materials to conduct batch tests (e.g., sorption/desorption). No testosterone was detected at the soil depth >20 cm or in the leachate samples, indicating that transport of testosterone through the soil is very slow when there is no preferential flow. Tillage practice could impede the transport of testosterone in runoff. For the first time, results and the methodologies of this study allow one to quantify the hormone distribution among runoff, leachate and soil matrix at the same time and to obtain a comprehensive picture of the F/T of manure-borne testosterone in soil-water environments.
關(guān)鍵詞:Testosterone; Rainfall simulation; Transport; Runoff; Leachate
|