国产三级在线,99免费精品视频,日韩精品人妻中文字幕有码无码,午夜福利视频无码一区二区三区

  設(shè)為主頁(yè) 加入收藏 English
 
 
 
 新聞動(dòng)態(tài)
 行業(yè)動(dòng)態(tài)
 展會(huì)信息
 誠(chéng)聘英才
 
 

測(cè)量應(yīng)用案例-20200810

發(fā)布時(shí)間:2020-08-27  點(diǎn)擊次數(shù):301  新聞來(lái)源:
 

文獻(xiàn)名: Chiral Nematic Liquid Crystal Behavior of Core–Shell Hybrid Rods Consisting of Chiral Cellulose Nanocrystals Dressed with Non-chiral Conformal Polymeric Skins

 

作者Ziyue Dong, Zihan Ye, Zhenkun Zhang, Ke Xia, and Pengjiao Zhang

Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China

 

摘要:The current work investigates how the nanoscale conformal coating layers of non-chiral polymeric materials can influence the chiral nematic liquid crystal (CLC) behaviors of the rodlike cellulose nanocrystals (CNCs), the bio-derived nanomaterials that have attracted significant attention. For this, we developed strategies to coat the CNC rods on the single-particle level with a homogeneous bioinspired polydopamine (PDA) layer, leading to well-defined core–shell CNC@PDA rods with various PDA coating thicknesses and excellent colloidal stability. Comprehensive investigation revealed that the CNC@PDA hybrid nanorods in concentrated suspensions form well-defined nematic liquid crystal phases with clear phase separation behavior that depend on the rod concentrations and ionic strengths, typical of charged rods. Most intriguingly, the nematic LC phases formed by the CNC@PDA rods with the PDA coating thickness achieved herein are indeed the perfect CLC phases, which form following the classic pathway of nucleation and coalesce of chiral tactoids and have colorful chiral fingerprints standing out from the dark suspensions. The pitches of the CLC phase increase sharply with increasing PDA coating thicknesses and are significantly larger than those of the pristine CNCs. Such observations can be attributed to the blurring effects of the PDA coating on the intrinsic surface chiral features of CNC of whatever origins that drive the formation of the CLC phases, resulting in weakening chiral interactions between CNC@PDA rods. Besides benefiting the understanding of the long-sought origin of the CLC phases of the pristine CNC, the current work demonstrates the possibility of controlling the CLC phase behaviors of CNC by tuning the thickness of the coating materials and also serves as the first example of directly transferring the unique chirality of CNC to other non-chiral materials.

 
 
上海市普陀區(qū)嵐皋路567號(hào)1108-26室 電話:021-62665073 400-718-7758 傳真:021-62761957
美國(guó)布魯克海文儀器公司上海代表處 版權(quán)所有  管理登陸 ICP備案號(hào):滬ICP備19006074號(hào)-2 技術(shù)支持:化工儀器網(wǎng)